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• Scattering geometry: Bragg law, Laue condition, Ewald sphere/reciprocal lattice 

• Scattering from a lattice (kinematical/first Born approximation) 

• Kinematical curves of  vs 

• Introduction to convergent beam electron diffraction (CBED) 

• Deficiencies of kinematical model
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Part A: scattering from a crystal lattice – kinematical

Part B: dynamical theory – Bloch wave approach
• Basic concepts 

• Application with 2-beam approximation 

• Dispersion surfaces 

• Diffracted beam intensities
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Diffraction pattern formation
• Parallel rays focused to a point at back 

focal plane 

• Equivalent to Fraunhofer far-field 
scattering
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Bragg law
• Constructive interference for: 

4

n! = 2dhkl sin"

• Crystalline sample tilted such that one plane at Bragg 
angle  relative to ! 2-beam diffraction pattern:!B k0

(1.36)
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Laue condition
• TEM scattering geometry is that of Laue diffraction (not Bragg)

5

• Laue condition: !q =
!
!k "
!
k0 =

!g

!g = h!a* + k
!
b * + l!c *

(1.37)

(1.38)
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Ewald sphere/reciprocal lattice construction
• Ewald sphere/reciprocal lattice construction provides method to identify which 

plane(s) diffract under chosen incident beam/crystal geometry
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Ewald sphere/reciprocal lattice construction
• Illustration using realistic parameters: 200 keV beam, BCC Fe crystal
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Diffraction away from exact Bragg condition
• Tilt crystal away from exact Bragg condition – plane still diffracts:

8
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• Introduce deviation parameter vector to describe deviation from Bragg:

Deviation parameter

9
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Scattering from a lattice (kinematical)

10

f !q( ) = 2!me
h2

! !r( )exp !2" i !q " !r{ }d !r
!#

#

$

• From last week, scattering amplitude for one atom: 

(1.25)

• Consider assembly of atoms into a unit cell:

exp 2! ikr{ }
r

! 1
!r( ) = f !q( ) (1.24)
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Scattering from a unit cell

11

• Total scattered wave from unit cell is:

! s
!r( ) = exp 2" ikr{ }

r
f j exp !2! i !q " !r j( )

j
#

=
exp 2! ikr{ }

r
F !q( ) (2.1)

• Defines the structure amplitude  for the unit cellF !q( )
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Scattering from a lattice (kinematical)

12

• Unit cell therefore scatters spherical wave (if viewed at large r) modulated as 
function of scattering angle according to value of F !q( )

• Now consider  assembly of identical unit cellsNx ! Ny ! Nz

• Reprising from eqs 1.37 and 1.39: !q = !g + !s (2.2)

Nz( Position of each unit cell
& O
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Scattering from a lattice (kinematical)

13

(2.4)

• Separate  and position of nth unit cell  into their components: !q !rn
!q = !g + !s = !g + sx

!a* + sy
!
b * + sz

!c * (2.3)

!rn = nx
!a + ny

!
b + nz

!c

• By definition  is necessarily an integer. Therefore: !g ⋅ !rn

 ψ s
!r( ) = exp 2π ikr{ }

r
F !q( )exp −2π i nxasx + nybsy + nzcsz( )⎡⎣ ⎤⎦

nz
∑

ny
∑

nx
∑ (2.5)
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Scattering from a lattice (kinematical)
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• The three summations in eq. 2.5 are geometric progressions of type: 

exp !2! iA" s"( )
A
" =

sin !A" s"( )
sin !"s"( ) (2.6)

• Letting the size of the sample be: Dx ! Dy ! t = Nxa ! Nyb ! Nzc
we obtain:

! s
!r( ) = exp 2" ikr{ }

r
F !q( ) sin !Nxasx( )

sin !asx( )
!

"
#

$

%
&
sin !Nybsy( )
sin !bsy( )

!

"
#
#

$

%
&
&

sin !Nzcsz( )
sin !csz( )

!

"
#

$

%
& (2.7)

•  is small, therefore:  !s sin !asx( ) ! !asx etc.

• Take volume of unit cell as:  Vc = abc

t : Thickness
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Scattering from a lattice (kinematical)
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• For TEM specimen,  and  >> Nx Ny Nz

(2.8)

• When calculate scattering intensity  eq. 2.7 becomes:Is = ! s
2

Is
!r( ) = exp 2! ikr{ }

r
F !q( )
Vc

!

"
#

$

%
&

2

!Dx! sx( )Dy! sy( )! sin "Nzcsz( )
" sz

"

#
$

%

&
'

2

• To find total scattered intensity need to integrate over sphere at distance  from sampler

• Element of surface area of sphere is:

d! =
dsxdsy
k2 cos!

dS = r2d!

• In reciprocal space:

+ = Ne - C

o
O
Racing

k
T T &-

radio
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Scattering from a lattice (kinematical)
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• From eq. 2.8: 

(2.9)

Ig =
Fg

! kVc cos"B

sin ! tsz( )
sz

!

"
#

$

%
&

2

! sx( )dsx! ! sy( )dsy!

Is
!r( ) = DxDy

F !q( )
rVc

exp 2! ikr{ }!

"
#

$

%
&

2
sin !Nzcsz( )

! sz

!

"
#

$

%
&

2

! sx( )! sy( )

• The intensity scattered in direction near  with deviation parameter  is:!g sz

Ig = I dS =!
DxDy

cos!
F !q( )
kVc

sin ! tsz( )
! sz

"

#
$

%

&
'

2

•  is area of crystal projected along 
Therefore intensity per unit area of diffracted beam is:
DxDy cos! !

!
k

(2.10)

where  is  for the reflection Fg F !g( ) !g

↓ -

↑
- O
-

#O
- Ep

T
--
-

Scattered wave k
is a plane wave I
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Fourier transform equivalence
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• Consider again eq. 2.5: ! s
!r( ) = exp 2" ikr{ }

r
F !q( )exp !2! i nxasx + nybsy + nzcsz( )"# $%

nz
&

ny
&

nx
&

• Summation term originating from  is slowly varying between the cells.!q ! !rn =
!s ! !rn

! s
!r( ) = exp 2" ikr{ }

r
F !q( )
Vc! exp "2! i!s ! !!r( )d !!r (2.13)

• Therefore can argue to replace summation by integral:

-

F T at object potential
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Scattering from a lattice (kinematical)

18

!g =
" kVc cos#B

Fg
(2.11)• Define “extinction distance”:

• Then: Ig =
sin ! tsz( )
!gsz

!

"
#

$

%
&

2

(2.12)

• Call  component of deviation parameter vector  the excitation error where: z !s s = sz

• Intensity of diffracted beam  modulates with  and Ig t s

• Going back to eq. 2.10: Ig =
Fg

! kVc cos"B

sin ! tsz( )
sz

!

"
#

$

%
&

2&
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Ig vs excitation error s

19

• Plot  vs Ig s

s

s = 0 Ig

Ig =
! t
"g

!

"#
$

%&

2
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Interaction with Ewald sphere

20

• Exact Bragg condition

h k l0 0 0

• Near Bragg condition

Intensity

k0

k’

θB

g
0

k0

k’

g

θB

∆θ

Intensity

s

0

h k l0 0 0

=>

[ [
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Methods for measuring Ig vs s
• How could we measure  vs  experimentally?Ig s

21
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Convergent beam electron diffraction
• 2-beam illustration with semi-focused beam (from J.-P. Morniroli)

22
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Convergent beam electron diffraction
• 2-beam illustration with fully-focused beam (from J.-P. Morniroli)

23
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Convergent beam electron diffraction
• 2-beam illustration with fully-focused beam (from J.-P. Morniroli)

24
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Convergent beam electron diffraction

• Diffracted beam CBED disc 
contains different ray paths 
that have sampled different 
excitation errors 

• Illustrate with Ewald sphere 
construction (diagram from 
J.-P. Morniroli)

s

25



Duncan Alexander EPFL-IPHYS-LSME. Electron-matter interactions: Elastic scattering (II)

Convergent beam electron diffraction
• Experimental 2-beam CBED pattern:

26
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Deficiencies of kinematical model
• As sample thickness  increases for , 

• Cannot explain experimental data e.g.:

t s = 0 Ig >1

27

2-beam CBED pattern Dark-field image of wedge-shaped sample

Mapping Eg spatially

↓ 5 = 0e

~mine I-
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Dynamical scattering
• Kinematical model very successful for predicting 

geometry of diffraction data.  

• However does not predict intensities well. Because 
electrons are strongly scattered by atoms! 

• On propagation of electron beam through crystal 
lattice this leads to multiple elastic scattering: called 
dynamical scattering

• The first Born approximation does not apply, except 
for very thin and weakly scattering objects! 

• Introduce Bloch wave theory as generally-applicable 
approach for treating dynamical scattering

28
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Dynamical theory: Bloch wave approach

29

• Take eq. 1.16, but now define  as crystal potential:! !r( )

• Aim: solve Schrödinger equation for wave function of fast electrons within crystal lattice

(2.14)!2! !r( )+ 8!
2me
h2

E0 +!
!r( )"# $%!

!r( ) = 0

• Expand periodic potential of lattice as a Fourier series based on the reciprocal lattice:

! !r( ) = Vg exp 2" i
!g ! !r( )

"#

#

$

Vg =
Fg
Vc

(2.15)

(2.16)

Game
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Dynamical theory: Bloch wave approach

30

• Full solution of eq. 2.14 written as linear superposition of Bloch waves : ! !r( )

• Each Bloch wave is an eigen solution of eq. 2.14

• Amplitudes  are determined by boundary conditions! j( )

(2.17)! !r( ) = ! j( )! j( ) !r( )
j
"

• Being inside a periodic crystal lattice, each Bloch wave can be represented by: 

! !r( ) = uk !r( )exp 2" i !k ! !r( )
where  has periodicity of the latticeuk

!r( )

(2.18)

f
-
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Dynamical theory: Bloch wave approach

31

• Wave function can then be expanded as a Fourier series based on the reciprocal lattice 
to give:

! !r( ) = Cg
g
! exp 2" i

!
k + !g( ) " !r#$ %&

•  are the Bloch wave coefficientsCg

(2.19)

• Collect coefficients together by defining “modified potential” 
with Fourier coefficients:

U !r( )

(2.20)

(2.21)

Ug =
2me
h2

Vg

! 2 = 2me
h2

E0 +"0( )
(c.f. equations 1.17)

• Define  as the mean electron wave vector in the crystal after allowing 
for mean crystal potential 

!
!0

-

O

-
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Dynamical theory: Bloch wave approach

32

• Substitute eqs 2.19–2.21 in the Schrödinger equation 2.14:

! 2 !
!
k + !g( )2"

#
$
%Cg + Ug!hCh

h&g
'

(
)
*

+
,
-g

' exp 2" i
!
k + !g( ) . !r"# $% = 0

• This equation holds for all points  in crystal. Therefore coefficient of 
each exponential term must be equal to zero:

!r

! 2 !
!
k + !g( )2"

#
$
%Cg + Ug!hCh

h&g
' = 0 (2.23)

(2.22)

S
n reflections -> neguations -> a Block wave soluting

n determiner accuracy of solution
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Bloch wave: 2-beam approximation

33

• Consider 2-beam case with strong scattering from only one plane 
– i.e. diffraction pattern with direct beam and one diffracted beam !g

• Eq. 2.19 terminated after two terms:

! 2 !
!
k 2"# $%C0 +U!gCg = 0

(2.25)

(2.24)! !r( ) = C0 exp 2" i
!
k ! !r( )+Cg exp 2" i

!
k + !g( ) ! !r"# $%

• Eq. 2.23 gives two equations:

! 2 !
!
k + !g( )2"

#
$
%Cg +UgC0 = 0

--

Diet
beam4

"Distracted bane
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Bloch wave: 2-beam approximation

34

• Rewrite these two equations in matrix form:

(2.27)

(2.26)

• Solution if determinant of the coefficients is equal to zero:

! 2 ! k2 U!g

Ug ! 2 !
!
k + !g( )2

"

#

$
$

%

&

'
'
C0

Cg

"
#$

%
&'
= 0

! 2 ! k2 U!g

Ug ! 2 !
!
k + !g( )2

= 0
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Bloch wave: 2-beam approximation

35

• Make high energy approximation:
! 2 ! k2 = 2! ! ! k( )

! 2 !
!
k + !g( )2 = 2! ! !

!
k + !g( )

(2.28)

• Eq. 2.27 becomes: ! ! k( ) ! !
!
k + !g( ) = UgU!g

4! 2 (2.29)

• 2 values of wave vector  and  inside the crystal, one for each Bloch wave
!
k 1( ) !

k 2( )

k - k= (k +h)(k - k) -
I 2k

k= 14 +) -
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Meaning of 2 (or more) Bloch waves

36

• Incident beam partitioned into Bloch waves in crystal. Each Bloch wave propagates 
with different wave vector  so they become out of phase with each other.

!
k j( )

• Entrance surface: need to match incident wave with total wave in crystal. 
 and  must be continuous. ! !"

• Define  as downward normal to crystal surface. Let  and  be components 
of  in  direction and plane of surface. 

z kz
j( ) kt

j( )
!
k j( ) z

• Leads to interference: crystal acts as interferometer.

• For symmetrical Laue case –  parallel to surface – tangential  components 
must be equal and equal to tangential component of . Therefore set 

!g kt
j( )

!
k0 kt

j( ) = kt

• Also: ! j( ) = C0
* j( )

uk -E

It place
cot/I
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Dispersion surfaces
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• Considering a general case, eq. 2.26 becomes: 

(2.30)
! 2 ! k j( )( )2 U!g

Ug ! 2 !
!
k j( ) + !g( )2

"

#

$
$
$

%

&

'
'
'

C0
j( )

Cg
j( )

"

#
$

%

&
' = 0

• Further high energy approximations yield: 

! 2 ! k j( )( )2 " 2! ! ! kz
j( )( )! kt2

! 2 !
!
k j( ) + !g( )2 " 2! ! ! kz

j( )( )! kt + g( )2
(2.31)

• Together yielding: 

1
2!

!kt
2 U!g

Ug ! kt + g( )2
"

#
$
$

%

&
'
'

C0
j( )

Cg
j( )

"

#
$

%

&
' = kz

j( ) !!( ) C0
j( )

Cg
j( )

"

#
$

%

&
' (2.32)



Duncan Alexander EPFL-IPHYS-LSME. Electron-matter interactions: Elastic scattering (II)

Dispersion surfaces

38

• Dispersion surface: 
plot of permitted values of  against kz

j( ) kt

•  values found by plotting normal to 
end of incident wave vector  and 
identifying its intersection with the 
branches

!
k j( )

!
k0

!
k0

• Calculated by solving eq. 2.32

kt

...I
↑

*

⑳

p
!

,

=Twhi
↑

·

/
&



Duncan Alexander EPFL-IPHYS-LSME. Electron-matter interactions: Elastic scattering (II)

Diffracted beam intensities

39

• From eqs 2.17 and 2.1 total wave function is:

• At bottom of crystal thickness  the Bloch waves decouple into their plane wave 
components.  
For zero order Laue zone ( ) amplitude in diffracted beam direction  is:

t

gz = 0
!
k + !g( )

(2.34)

(2.33)! !r( ) = ! j( )! j( ) !r( )
j
" = ! j( )

j
" Cg

j( )

g
" exp 2! i

!
k j( ) + !g( ) # !r$

%
&
'

!g t( ) = " j( )

j
! Cg

j( )

g
! exp 2# ikz

j( )t( )
! j( ) = C0

* j( )where
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Diffracted beam intensities

40

• Intensity in diffracted beam is then:

• Further at exact Bragg :kt = !0.5g (2.36)

Ig t( ) = C0
j( )*Cg

j( )

j
! exp 2! ikz

j( )t( )
2

(2.35)

kz
1( ) ! kz

2( ) =
Ug

! cos"B

C0
1( ) = C0

2( ) = Cg
1( ) = !Cg

2( ) = 1
2

(2.37)

• Extinction distance: !g =
1

kz
1( ) ! kz

2( ) =
" cos#B
Ug

(2.38)

O

⑳
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Diffracted beam intensities

41

• From eqs 2.35–2.38, at exact Bragg condition: 

(2.39)Ig t( ) = sin2 ! t
"g

!

"#
$

%&
I0 t( ) = 1! Ig t( ) = cos2 ! t

"g

!

"#
$

%&

t

I

-

2*- -

·
↓

i
n

+: 3,*Ig = 0
T O
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Thickness fringes
• Bright-field and dark-field imaging of Si cleaved wedge at 2-beam condition

42

Bright field Dark fieldDiffraction

Selecting beam
~ with objective aperture

Map
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o
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·
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Diffracted beam intensities

43

• More generally: (2.40)Ig t( ) = 1
1+ "g

2s2
sin2 ! t 1

"g
2 + s

2
!

"
#

$

%
& I0 t( ) = 1! Ig t( )

!"!"#$%& !"!"#$%&

#'('%)*'"# #'('+)*'"#
$% $%

envelope

• Model  vs  for  = 100 nmIg s !g
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Diffracted beam intensities
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• More generally: (2.40)Ig t( ) = 1
1+ "g

2s2
sin2 ! t 1

"g
2 + s

2
!

"
#

$

%
& I0 t( ) = 1! Ig t( )

• Model  vs  for  = 100 nmIg s !g

#'('%)*'"# #'('++*'"#
$% $%

!"!"#$%& !"!"#$%&
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Diffracted beam intensities
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• More generally: (2.40)Ig t( ) = 1
1+ "g

2s2
sin2 ! t 1

"g
2 + s

2
!

"
#

$

%
& I0 t( ) = 1! Ig t( )

• Model  vs  for  = 100 nmIg s !g

#'('%)*'"# #'('+**'"#
$% $%
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